Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison.

Identifieur interne : 002862 ( Main/Exploration ); précédent : 002861; suivant : 002863

Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison.

Auteurs : Maria Novatchkova [Autriche] ; Konstantin Tomanov ; Kay Hofmann ; Hans-Peter Stuible ; Andreas Bachmair

Source :

RBID : pubmed:22799003

Descripteurs français

English descriptors

Abstract

The conjugation of the small ubiquitin-related modifier, SUMO, to substrate proteins is a reversible and dynamic process, and an important response of plants to environmental challenges. Nevertheless, reliable data have so far been restricted largely to the model plant Arabidopsis thaliana. The increasing availability of genome information for other plant species offers the possibility to identify a core set of indispensable components, and to discover species-specific features of the sumoylation pathway. We analyzed the enzymes responsible for the conjugation of SUMO to substrates for their conservation between dicots and monocots. We thus assembled gene sets that relate the Arabidopsis SUMO conjugation system to that of the dicot species tomato, grapevine and poplar, and to four plant species from the monocot class: rice, Brachypodium distachyon, Sorghum bicolor and maize. We found that a core set of genes with clear assignment in Arabidopsis had highly conserved homologs in all tested plants. However, we also observed a variation in the copy number of homologous genes, and sequence variations that suggested monocot-specific variants. Generally, SUMO ligases and proteases showed the most pronounced differences. Finally, we identified potential SUMO chain-binding ubiquitin ligases, pointing to an in vivo function of SUMO chains as degradation signals in plants.

DOI: 10.1111/j.1469-8137.2012.04135.x
PubMed: 22799003
PubMed Central: PMC3399776


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison.</title>
<author>
<name sortKey="Novatchkova, Maria" sort="Novatchkova, Maria" uniqKey="Novatchkova M" first="Maria" last="Novatchkova">Maria Novatchkova</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Institute of Molecular Pathology, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Research Institute of Molecular Pathology, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tomanov, Konstantin" sort="Tomanov, Konstantin" uniqKey="Tomanov K" first="Konstantin" last="Tomanov">Konstantin Tomanov</name>
</author>
<author>
<name sortKey="Hofmann, Kay" sort="Hofmann, Kay" uniqKey="Hofmann K" first="Kay" last="Hofmann">Kay Hofmann</name>
</author>
<author>
<name sortKey="Stuible, Hans Peter" sort="Stuible, Hans Peter" uniqKey="Stuible H" first="Hans-Peter" last="Stuible">Hans-Peter Stuible</name>
</author>
<author>
<name sortKey="Bachmair, Andreas" sort="Bachmair, Andreas" uniqKey="Bachmair A" first="Andreas" last="Bachmair">Andreas Bachmair</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22799003</idno>
<idno type="pmid">22799003</idno>
<idno type="pmc">PMC3399776</idno>
<idno type="doi">10.1111/j.1469-8137.2012.04135.x</idno>
<idno type="wicri:Area/Main/Corpus">002964</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002964</idno>
<idno type="wicri:Area/Main/Curation">002964</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002964</idno>
<idno type="wicri:Area/Main/Exploration">002964</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison.</title>
<author>
<name sortKey="Novatchkova, Maria" sort="Novatchkova, Maria" uniqKey="Novatchkova M" first="Maria" last="Novatchkova">Maria Novatchkova</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research Institute of Molecular Pathology, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Research Institute of Molecular Pathology, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tomanov, Konstantin" sort="Tomanov, Konstantin" uniqKey="Tomanov K" first="Konstantin" last="Tomanov">Konstantin Tomanov</name>
</author>
<author>
<name sortKey="Hofmann, Kay" sort="Hofmann, Kay" uniqKey="Hofmann K" first="Kay" last="Hofmann">Kay Hofmann</name>
</author>
<author>
<name sortKey="Stuible, Hans Peter" sort="Stuible, Hans Peter" uniqKey="Stuible H" first="Hans-Peter" last="Stuible">Hans-Peter Stuible</name>
</author>
<author>
<name sortKey="Bachmair, Andreas" sort="Bachmair, Andreas" uniqKey="Bachmair A" first="Andreas" last="Bachmair">Andreas Bachmair</name>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Cysteine Endopeptidases (genetics)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Enzymes (genetics)</term>
<term>Enzymes (metabolism)</term>
<term>Ligases (genetics)</term>
<term>Ligases (metabolism)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (genetics)</term>
<term>Plants (metabolism)</term>
<term>Populus (genetics)</term>
<term>Small Ubiquitin-Related Modifier Proteins (genetics)</term>
<term>Small Ubiquitin-Related Modifier Proteins (metabolism)</term>
<term>Sorghum (genetics)</term>
<term>Sumoylation (MeSH)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cysteine endopeptidases (génétique)</term>
<term>Cysteine endopeptidases (métabolisme)</term>
<term>Enzymes (génétique)</term>
<term>Enzymes (métabolisme)</term>
<term>Ligases (génétique)</term>
<term>Ligases (métabolisme)</term>
<term>Oryza (génétique)</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine (génétique)</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (génétique)</term>
<term>Plantes (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Sorghum (génétique)</term>
<term>Sumoylation (MeSH)</term>
<term>Zea mays (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cysteine Endopeptidases</term>
<term>Enzymes</term>
<term>Ligases</term>
<term>Plant Proteins</term>
<term>Small Ubiquitin-Related Modifier Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Cysteine Endopeptidases</term>
<term>Enzymes</term>
<term>Ligases</term>
<term>Plant Proteins</term>
<term>Small Ubiquitin-Related Modifier Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Oryza</term>
<term>Plants</term>
<term>Populus</term>
<term>Sorghum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Enzymes</term>
<term>Ligases</term>
<term>Oryza</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine</term>
<term>Plantes</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Sorghum</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cysteine endopeptidases</term>
<term>Enzymes</term>
<term>Ligases</term>
<term>Petites protéines modificatrices apparentées à l'ubiquitine</term>
<term>Plantes</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Phylogeny</term>
<term>Sumoylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phylogenèse</term>
<term>Sumoylation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The conjugation of the small ubiquitin-related modifier, SUMO, to substrate proteins is a reversible and dynamic process, and an important response of plants to environmental challenges. Nevertheless, reliable data have so far been restricted largely to the model plant Arabidopsis thaliana. The increasing availability of genome information for other plant species offers the possibility to identify a core set of indispensable components, and to discover species-specific features of the sumoylation pathway. We analyzed the enzymes responsible for the conjugation of SUMO to substrates for their conservation between dicots and monocots. We thus assembled gene sets that relate the Arabidopsis SUMO conjugation system to that of the dicot species tomato, grapevine and poplar, and to four plant species from the monocot class: rice, Brachypodium distachyon, Sorghum bicolor and maize. We found that a core set of genes with clear assignment in Arabidopsis had highly conserved homologs in all tested plants. However, we also observed a variation in the copy number of homologous genes, and sequence variations that suggested monocot-specific variants. Generally, SUMO ligases and proteases showed the most pronounced differences. Finally, we identified potential SUMO chain-binding ubiquitin ligases, pointing to an in vivo function of SUMO chains as degradation signals in plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22799003</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>195</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison.</ArticleTitle>
<Pagination>
<MedlinePgn>23-31</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The conjugation of the small ubiquitin-related modifier, SUMO, to substrate proteins is a reversible and dynamic process, and an important response of plants to environmental challenges. Nevertheless, reliable data have so far been restricted largely to the model plant Arabidopsis thaliana. The increasing availability of genome information for other plant species offers the possibility to identify a core set of indispensable components, and to discover species-specific features of the sumoylation pathway. We analyzed the enzymes responsible for the conjugation of SUMO to substrates for their conservation between dicots and monocots. We thus assembled gene sets that relate the Arabidopsis SUMO conjugation system to that of the dicot species tomato, grapevine and poplar, and to four plant species from the monocot class: rice, Brachypodium distachyon, Sorghum bicolor and maize. We found that a core set of genes with clear assignment in Arabidopsis had highly conserved homologs in all tested plants. However, we also observed a variation in the copy number of homologous genes, and sequence variations that suggested monocot-specific variants. Generally, SUMO ligases and proteases showed the most pronounced differences. Finally, we identified potential SUMO chain-binding ubiquitin ligases, pointing to an in vivo function of SUMO chains as degradation signals in plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Novatchkova</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Research Institute of Molecular Pathology, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tomanov</LastName>
<ForeName>Konstantin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hofmann</LastName>
<ForeName>Kay</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stuible</LastName>
<ForeName>Hans-Peter</ForeName>
<Initials>HP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bachmair</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P 21215</GrantID>
<Agency>Austrian Science Fund FWF</Agency>
<Country>Austria</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004798">Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025841">Small Ubiquitin-Related Modifier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C575421">At1g09730 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C575420">At3g48480 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C575422">At4g33620 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.-</RegistryNumber>
<NameOfSubstance UI="D008025">Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.2.-</RegistryNumber>
<NameOfSubstance UI="C502552">SIZ1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004798" MajorTopicYN="N">Enzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008025" MajorTopicYN="N">Ligases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025841" MajorTopicYN="N">Small Ubiquitin-Related Modifier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045868" MajorTopicYN="N">Sorghum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058207" MajorTopicYN="Y">Sumoylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">UKMS48686</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22799003</ArticleId>
<ArticleId IdType="pmc">PMC3399776</ArticleId>
<ArticleId IdType="mid">UKMS48686</ArticleId>
<ArticleId IdType="doi">10.1111/j.1469-8137.2012.04135.x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2003 Oct;15(10):2308-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:191-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Dec 12;20(18):3702-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15284097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15698469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):16117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Aug 15;22(16):2044-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16777906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Sep 15;398(3):521-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):318-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16920872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Dec;142(4):1548-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Apr;19(4):1403-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2007 Jun;8(6):550-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17545995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2007 Jun;32(6):286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 May;19(5):1537-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Sep;145(1):119-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Oct;10(5):495-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17720613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 Nov;3(11):697-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17948018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 1;283(31):21469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1915-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18664616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2894-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1529-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2009 May 1;75(2):336-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18831036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 26;458(7237):422-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19276109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 5;284(23):15458-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19336407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19626045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Aug;21(8):2284-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):666-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2010 Feb;38(Pt 1):60-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 18;463(7283):906-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2010 Apr;20(4):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20189809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 Aug;30(15):3737-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20516210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):1998-2016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20813957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17415-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Nov;33(11):1923-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Dec;11(12):861-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21102611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21113020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jan;233(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20922545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2010;54:195-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21222284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Feb;189(3):869-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21083564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):1000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Feb;16(2):77-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21081278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Mar;7(3):e1001320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21408210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Jun;31(11):2299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2011;2:400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21772271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2011 Oct;32(4):305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21912873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Sep;18(9):1052-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21857666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2225-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2012 Jan;37(1):23-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22018829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Oct;16(10):558-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Oct 5;107(1):5-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2003 Jan;5(1):21-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12471376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 28;278(9):6862-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12482876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jun;15(6):1347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2952-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(3):530-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18069938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Apr;279(4):371-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18219493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15449058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
</country>
<region>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bachmair, Andreas" sort="Bachmair, Andreas" uniqKey="Bachmair A" first="Andreas" last="Bachmair">Andreas Bachmair</name>
<name sortKey="Hofmann, Kay" sort="Hofmann, Kay" uniqKey="Hofmann K" first="Kay" last="Hofmann">Kay Hofmann</name>
<name sortKey="Stuible, Hans Peter" sort="Stuible, Hans Peter" uniqKey="Stuible H" first="Hans-Peter" last="Stuible">Hans-Peter Stuible</name>
<name sortKey="Tomanov, Konstantin" sort="Tomanov, Konstantin" uniqKey="Tomanov K" first="Konstantin" last="Tomanov">Konstantin Tomanov</name>
</noCountry>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Novatchkova, Maria" sort="Novatchkova, Maria" uniqKey="Novatchkova M" first="Maria" last="Novatchkova">Maria Novatchkova</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002862 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002862 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22799003
   |texte=   Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22799003" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020